=——_ CarnegieMellon
—== Software Engineering Institute

Into the Black Box:

A Case Study in Obtaining
Visibility into Commercial
Software

Daniel Plakosh
Scott Hissam
Kurt Wallnau

March 1999

COTS-Based Systems Initiative

|
|
|

19990825 119

Technical Note
CMU/SEI-99-TN-010

DISTRIBUTION STATEMENT A
vApp,r_(w,'ed for Public Release
Distribution Unlimited

QTIC QUALITY INGPECIED &

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of “Don't ask, don't tell, don't pursue” excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are

available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enroliment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone

(412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

CarnegieMellon
—=— Software Engineering Institute

Pittsburgh, PA 15213-3890

Into the Black Box:

A Case Study in Obtaining
Visibility into Commercial
Software

Daniel Plakosh
Scott Hissam
Kurt Wallnau

March 1999

COTS-Based Systems Initiative

Technical Note
CMU/SEI-99-TN-010

Unlimited distribution subject to the copyright

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 1999 by Camegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL 1S
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

Please refer to http://www.sei.cmu.edu/publications/pubweb.html for information about ordering paper copies of SEI
reports.

Camegie Mellon University does not discriminate and Camegie Mellon University is required not to discriminate in admission, employment, or
administration of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act
of 1964, Title 1X of the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or
executive orders.

In addition, Camegie Metlon University does not discriminate in admission, employment or administration of its programs on the basis of religion,
creed, ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the
judgment of the Camegie Mellon Human Relations Commission, the Department of Defense policy of, “Don't ask, don’t tell, don’t pursue,”
excludes openly gay, lesbian and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at
Camegie Mellon University are available to all students.

Inquiries conceming application of these statements should be directed to the Provost, Camegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-6684 or the Vice President for Enroliment, Camegie Mellon University, 5000 Forbes Avenue,

Pittsburgh, PA 15213, telephone (412) 268-2056.
Obtain general information about Camegie Mellon University by calling (412)-268-2000.

Contents

Abstract

1 Introduction

2 Database

3 Certificate Database
4 Key Database

5 Summary
References

10

18

19

CMU/SEI-99-TN-010

CMU/SEI-99-TN-010

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

DBDump.c Code

Output of DBDump (key3.db File as Input)
Certificate Database Record Type Header
Certificate Database Record Types
Certificate Database Record Formats
Database Browsing Tool

Key Record Types

Private Key Database Record Formats
Private Key Record Header And Key

Code to Change the DB Encryption Algorithm
Password and Global Salt Hash Function
Key and IV Generation

Triple DES Decrypt Function

Certificate Fragment of Database Access Key
Private Key Record Access Key

NoO o AW

11
12
14
14
16
17
17
17

CMU/SEI-99-TN-010

CMU/SEI-99-TN-010

Abstract

We were recently involved with a project that faced an interesting and not uncommon
dilemma. The project needed to programmatically extract private keys and digital
certificates from the Netscape Communicator v4.5 database. Netscape documentation was
inadequate for us to figure out how to do this. As it turns out, this inadequacy was
intentional—Netscape was concerned that releasing this information might possibly violate
export control laws concerning encryption technology. Since our interest was in building a
system and not exporting cryptographic technology, we decided to further investigate how to
achieve our objectives even without support from Netscape. We restricted ourselves to the
use of Netscape-provided code and documentation, and to information available on the Web.
Our objective was to build our system, and to provide feedback to Netscape on how to
engineer their product to provide the capability that we (and others) need, while not making
the product vulnerable or expose the vendor to violations of export control laws. This paper
describes our experiences peering “into the black box.”

CMU/SEI-99-TN-010 v

vi

CMU-SEI-99-TN-010

1 Introduction

The use of commercial off-the-shelf (COTS) software products can reduce the time and cost
of developing software, assuming that developers know how to make full use of the product.
COTS product vendors often supply only user-level documentation. In most cases, this level
of documentation is adequate, but in some instances the developer may need information
about the internal operation of a product, its performance characteristics, and perhaps
internal data formats. COTS software vendors are often reluctant to release such information
because it may have proprietary value. Nevertheless, it is sometimes necessary for the
developer to probe into a COTS product to obtain needed functionality or understanding in
order to effectively use the product.

Such was the case in one of our projects. We needed to programmatically extract private
keys and certificates from the Netscape Communicator (version 4.5) internal databases. The
Netscape certificate database (cert7.db) and key database (key3.db) contain certificates and
private keys that are ultimately used to provide authentication and secure communication.
Netscape does not, however, make the format of their key database (key3.db) and certificate
database (cert7.db) publicly available because releasing this information could possibly
violate the International Trade and Export Regulations (ITAR) regarding key management in
cryptographic systems.

This report describes what we did to gain insight into Netscape’s Communicator databases,
the internal formats of the databases, and the password and encryption schemes used in the
key3.db database. Note that we did not disassemble any Netscape software products. We
limited ourselves to documentation and other resources provided by Netscape and to
resources that we could obtain from the Web. The results of our work can not be used in any
manner to subvert or crack the standard encryption algorithms used by Netscape Corporation
in the protection of certificate and key material stored in the Communicator’s databases.

The rest of this report is organized of as follows: In Section 2, we describe the database used
by Netscape. Section 3 describes the record formats of the certificate database. In Section 4
we describe the key database record formats and the encryption algorithm used to encrypt
private keys. Finally, we present our summary in Section 5.

CMU/SEI-99-TN-010 1

2 Database

The first step in decoding these databases was to determine the type of database system that
Netscape used to store information. If Netscape used a proprietary database, this step was
going to be difficult. We recalled that Netscape released some initial source code of their
Mozilla browser. Although the released source code did not contain support for security, we
suspected that Netscape used the same database to store more than just security-related
items. If this suspicion held true, we could take advantage of our knowledge of this
implementation detail to gain programmatic access to the Netscape databases.

We downloaded the Mozilla source, unzipped it and discovered a directory named “dbm.”
After a closer investigation, we discovered that the files in the dbm directory were the source
code files for the Berkeley DB 1.85 database. Next, we built a library from the source for the
Berkeley DB 1.85. We wrote a simple test program called “DBDump” (see Figure 1) to open
a database, dump all records, and access keys in binary form.

The Berkeley DB 1.85 database supports three different types of databases files:
e DB_HASH- allows arbitrary key/data pairs to be stored in data files

e DB_BTREE - allows arbitrary key/data pairs to be stored in a sorted, balanced
binary tree

e DB_RECNO - allows both fixed-length and variable-length flat text files to be
manipulated using the same key/value pair interface as in DB_HASH and
DB_BTREE. For DB_RECNO, the key will consist of a record (line) number

The test program executed successfully on both the key (key3.db) and certificate (cert7.db)
databases. Thus, we determined that the Berkley DB 1.85 was the database system Netscape
used to create, access and modify the databases. Figure 2 shows the output from the
“DBDump” program when given a key3.db file as input. Both the certificate and key
databases are in the DB_HASH format.

2 CMU-SEI-99-TN-010

#pragma hdrstop
#include <condefs.h>
#include <stdio.h>
#include <ctype.h>
#include "mcom_db.h"

J = e e e e e e e m e
USELIB("..\lib\dbm\dbmlib.1lib");

/] = e e e e e e e e C e m o —mo e oo
void dumphex(unsigned char *dptr,int size);
e e ettt

#pragma argsused
int main(int argc, char **argv) ({
static HASHINFO hash_info = {16*1024,0,0,0,0,0};

DB * db;
int status, record=R_FIRST, cnt=0;
DBT key,data;

if (argc!=2) {
fprintf(stderr, "$s <filename>",argv([0]);
return{(-1);

} .
if ((db=dbopen(argv([1l],0_RDONLY,0644,DB_HASH, &hash_info))==NULL) {
fprintf (stderr, "Database open error\n");
return(-1);

}

while ({status=(*db->seq) (db, &key, &data,record))==0) {
printf ("Record %d\nKey Data: (%d bytes)\n",++cnt, key.size);
dumphex ((unsigned char *)key.data,key.size);
printf ("Record Data: (%d bytes)\n",data.size);
dumphex ((unsigned char *)data.data,data.size);
printf("\n\n");
record=R_NEXT;

}

db->close (db) ;

if (status<0) {
fprintf (stderr, "Database sequence error");
return(-1);

return(0);
void dumphex{unsigned char *dptr,int size) {
int cnt,counter=0;

while(size>0) {
(size>16)? cnt=16 :cnt=size;

printf("%$081x »,counter) ;
for (int i=0;i<cnt;i++) printf("%02x ",dptrlcounter+i]);
for (int i=0;i<l6-cnt;i++) printf(" ");

printf(* *);
for (int i=0;i<cnt;i++)
(isprint (dptrcounter+i])) ? printf("%c",dptr[counter+i]) :printf(".");
printf("\n");
counter+=16;
size-=16;
}

return;

Figure 1: DBDump.c Code

CMU/SEI-99-TN-010

Record 1

Key Data: (7 bytes)

00000000 56 65 72 73 69 6f 6e Version

Record Data: (1 bytes)

00000000 03

Record 2

Key Data: (11 bytes)

00000000 67 6c 6f 62 61 6c 2d 73 61 6¢c 74 global-salt
Record Data: (16 bytes) .

00000000 d4 bd e9 b8 A2 6¢c 78 ad b9 28 e0 52 36 48 3b b7 1x..(.R6H;
Record 3

Key Data: (14 bytes)

00000000 70 61 73 73 77 6f 72 64 24 63 68 65 63 6b password-check
Record Data: (48 bytes)

00000000 03 10 01 ea £1 02 3f c8 d9 3¢ 3b 86 b8 53 3f 24 ?..<;..8?-
00000010 0d 52 6¢c 00 Ob 2a 86 48 86 £7 04 01 Oc 05 01 03 .Rl..*.H........
00000020 Se ed a0 c0 65 dl1 39 Of e3 7a 37 ed 99 76 7b lc ~...e.9..z7..v{
Record 4

Key Data: (65 bytes)

00000000 00 bl e0 ad 39 e7 09 41 b9 43 21 90 9b 0f 95 789..A..!....x
00000010 e6 £fd ef d3 62 34 51 4d 79 02 83 17 9f 4f 09 68b4QMy....O0.h
00000020 Sc 81 a2 e6 2d bl f7 bb e6 €9 ba 39 a5 £4 17 0b \...-....1.9....
00000030 a9 a9 ea b0 4c 7f ff 55 a5 46 a7 67 10 3a 1f elL..U.F.g.:
00000040 7b {

Record Data: (436 bytes)

00000000 03 08 23 47 eb a8 ce fc 4b c0 6b 53 63 6f 74 74 ..#G....K.kScott
00000010 20 41 20 48 69 73 73 61 64 27 73 20 56 65 72 69 A Hissam'’s Veri
00000020 53 69 67 6e 2c 20 49 6e 63 2e 20 49 44 00 30 82 Sign, Inc. ID.O.
00000030 01 82 30 1lc 06 Ob 2a 86 48 86 £7 04 01 Oc 05 01 ..0...*.H.......
00000040 03 30 0d 04 08 47 eb a8 ce fc 4b ¢c0 6b 02 01 01 .0...G....K.k...
00000050 04 82 01 60 bf 3e 52 71 3e 07 94 73 25 f2 28 84 .V L.>Ra>. .s%. (.
00000060 06 d6 le f8 b3 ec fa 59 17 06 ec £f9 8f 92 19 fe Yeoernnn.
00000070 4c ff c3 81 £f8 be £0 12 a2 dd 6a d3 17 da 56 5a L......... j...VZ
00000080 b4 65 8b e8 53 6f 4b ae 6f 5f 39 dc 1f ef bf 56 .e..loK.0_9....V
00000090 6e 79 d5 b4 2b 9a 6e 20 98 44 66 98 79 4c 85 98 ny..+.n .Mf.yL..
000000a0 31 1d 4b e3 de ef c3 07 54 76 86 50 a8 22 9%e 94 1.K..... Tv.P."..
000000b0 c8 cb f9 f4 46 9e 52 26 £8 20 8c 51 e8 52 6e 95F.R&. .Q.Rn.
000000c0O 16 ca 9d 44 e6 7e 90 69 96 le le df cc 67 fe ab ..Mo~dillLe g..
00000040 96 5a d7 88 26 la a9 cc 52 f6 97 Of 28 fc 52 96 .Z..&...R...(.R.
000000e0 de fb £fd £f7 87 01 ae 71 e0 88 1b c6 7d 01 ¢8 83 o PRP T
000000£0 27 40 36 a3 46 23 Ad 64 86 64 £7 64 73 46 04 30 ’@6.F#.d4.d.dsF.0
00000100 3a 96 71 33 7e 98 £f1 be 18 b9 8b 10 da ff fa 32 e i R, 2
00000110 ac 03 18 37 da 87 32 5f eb £f7 ed 04 37 b2 1b 97 ...7..2_....7...
00000120 35 d6 38 £f2 £8 cc 4e 2d 00 e2 43 f1 6f 02 b2 fd 5.8...N-..C.o...
00000130 94 53 94 7b 78 00 4d fb 44 47 63 6e b9 65 92 4c .S.{x.M.MGcn.e.L
00000140 03 ¢2 a6 9f 20 59 80 45 a0 d4 b2 79 51 6e 31 b6 .. Yoo, yonl
00000150 20 d4 a9 43 80 31 ce c6 93 Oc b0 le 2f 13 3f c3 R o /.?.
00000160 c0 e0 7b 16 89 76 88 Ad 38 d6 8f 2b 5f 6f£ 50 1d ..{..v..8..+ OP
00000170 £7 48 d9 2e 89 c2 04 1f 78 6b ac 85 97 55 0f 71 .H...... xk...U.q
00000180 be 5d d2 c7 c8 22 41 b6 c9 a0 c9 81 cd 93 55 83 .]..."A....... U.
00000190 a2 9d e3 00 63 72 4f 79 d4 e9 ad 1d le cd 79 3f ..Cx0y...... y?
000001a0 89 9a 66 e4 f6 a2 1d ec a0 3e 61 35 81 cc b8 83 ..f...... >a5....
000001b0 5c df 87 24 \..$

Figure 2: Output of DBDump (key3.db File as Input)

CMU-SEI-99-TN-010

3 Certificate Database

The next step was to determine the format of the data and access keys for each database
record.

Decoding the certificate database was much easier than expected. We searched the Web and
newsgroups using most of the available search engines for information describing Netscape’s
certificate database. Combinations of the keywords such as cert7.db, decode, ASN.1, DER,
certificate-database, format, specification, certificate, security, and Netscape were used as
input into the search engines.

It turned out that some information describing the content and format of the Netscape
certificate database was available on the Internet. All records in the certificate database have
a common header that describes the type of record. This information was described in some
detail at the following Web sites (note that one of these sites was overseas, thus calling into
question whether export control laws are material insofar as Netscape’s product are
concerned):

e http://www.drh-cosultancy.demon.co.uk/cert7.html

e http://www.columbia.edu/~ariel/good-certs/

e hitp://www.netscape.com/eng/security/downloadcert.html

The information at these Web sites did not describe every field of the header or every field of
each record. We then obtained a copy of the Netscape Security Services (NSS) library from
Netscape. It turned out that Netscape documented, to a certain extent, the exact format of the
common header as well as the format for each possible type of record in the database. The
common header as shown in Figure 3 has the following fields:

1. aVersion field that indicates the database version (currently 7)

2. aType field that indicates the type of record

3. aFlags field (always zero)

CMU/SEI-99-TN-010 5

typedef struct
{
unsigned char Version;
unsigned char Type:;
unsigned char Flags;
} DBHeader;

Figure 3: Certificate Database Record Type Header

Using some of the NSS header files, we determined the list of possible record #ypes (the
Type field in Figure 3) in the certificate database as shown in Figure 4. Some of this
information was also defined in the Internet resources that we located.

// Record Types

#define CERT7VERSION
#define CERT7CERTIFICATE
#define CERT7NICKNAME
#define CERT7SUBJECT
#define CERT7REVOCATION
#define CERT7KEYREVOCATION
#define CERT7SMIMEPROFILE
#define CERT7CONTENTVERSION 7

AN WNORO

Figure 4: Certificate Database Record Types

Then we focused on determining the format of each record. This task was simple thanks to
Netscape’s NSS header files. Figure 5 shows the C structures that define the format of each
record type in the database. These structures were derived using Netscape’s header files that
document the byte offsets of fields within a record and hexadecimal dumps from the
“DBDump” tool described earlier. Records in the certificate database are in big endian
format, so all fields that are of the type “unsigned short” must be byte swapped. Most of the
important information contained within a record is distinguished encoding rules (DER)
encoded.

Two records that are always in the database are the CERT7VERSION and
CERT7CONTENTVERSION records. These records have the access key "\ 0Version\0"
and "\7ContentVersion\0" respectively and may be used to identify a certificate
database.

Now that we had determined the record formats for the certificate database, a tool to browse
the database was constructed. This tool (shown in Figure 6) displays to the user a listing of
each record in the database. The user can then select a particular record and the tool will
display the key index for the record as well as its contents. Record fields that are DER
encoded can be displayed in abstract syntax notation one (ASN.1) or Hex/ASCII format.
Additionally, the tool allows the user to save a certificate to a file in DER format.

6 CMU-SEI-99-TN-010

#define CERTIFICATEHEADERFIXEDSIZE 10

// Flags for Object Signing, E-mail and SSL

#define CERT7DB_VALID_PEER (1<<0)
#define CERT7DB_TRUSTED (1<<1)
#define CERT7DB_SEND_WARN (1<<2)
#define CERT7DB_VALID_CA (1<<3)
#define CERT7DB_TRUSTED_CA (1<<4)
#define CERT7DB_NS_TRUSTED_CA {1<<5)
#define CERT7DB_USER (1<<6)
#define CERT7DB_TRUSTED_CLIENT_CA (1<<7)
#define CERT7DB_INVISIBLE_CA (1<<8)

#define CERT7DB_GOVT_APPROVED_CA (1<<9)
#define CERT7DB_PROTECTED_OS_CA (1<<10)

typedef struct

{
unsigned short SSLFlags;
unsigned short EMailFlags; -
unsigned short ObjectSigningFlags;
unsigned short DERCertificateLength;
unsigned short NickNameLength;
unsigned char *DERCertificate;
char *Nickname;

}CertificateHeader;

#define NICKNAMEHEADERFIXEDSIZE 2
typedef struct
{

unsigned short NickNameDERLength; .
unsigned char *NicknameDER;
} NickNameHeader;

#define SUBJECTHEADERFIXEDSIZE 6

typedef struct
{
unsigned short NumberOfCertificates;
unsigned short NicknameLength;
unsigned short EmailAddressLength;
char * NickName;
char * EMailAddress;
unsigned short * CertificateKeylLength;
unsigned short * KeyIDLength;
unsigned char * CertificateKeys;
unsigned char * KeyIDs;
}SubjectHeader;

#define MIMEHEADERFIXEDSIZE 6

typedef struct

{
unsigned short DERSubjectNameLength;
unsigned short MineOptionsLength;
unsigned short OptionsDateLen;
unsigned char * DERSubjectName;
unsigned char * MimeOptions;
unsigned char * OptionsbDate;

} MimeHeader;

#define REVOCATIONHEADERFIXEDSIZE 4
typedef struct

{

unsigned short DERCertificateLength;
unsigned short URLLength;

unsigned char *DERCertificate;

char *URL;

} RevocationHeader;

#define CERTVERSIONHEADERFIXEDSIZE O
typedef struct
{

// Contains just the common header
} CertVersionHeader;

#define CERTCONTENTVERSIONHEADERFIXEDSIZE 1
typedef struct

{

unsigned char ContentVersion;

} CertContentVersionHeader;

Figure 5: Certificate Database Record Formats

CMU/SE!-99-TN-010

The database key information shown in Figure 6 at the beginning of the record content is
used by the database to quickly retrieve a record. A record is typically retrieved using the key

information as shown in the code fragment below:

DBT key, data;

key.data=(void *)“”Version”;

key.size=strlen(“Version”)+1; .

if ((db->get) (db, &key, &data, 0) ==RET_SUCCESS) DisplayRecord(&data);

In the above example the key and data variable are the type DBT (data base thang [sic]) as
described in the Berkley 1.85 documentation.

The exact details of how Netscape selects keys for each particular type of record are
unknown. In some cases the database key appears to contain DER encoded information while
in other cases the key appears to be just a string. Additional information regarding database
index keys will be discussed in the next section.

8 CMU-SEI-99-TN-010

Cert 7 Nickname
Cert 7 Subject

is :117 bytes -

E28F DF6C FEFE 109A AA2D 2D9D F730 6231 L. Z.

0F06 0355 0407 496E 7465 726E 6574 3117 .0...U....Internetl.
0603 5504 0A13 6572 6953 6967 6E2C 2049 0...U0....VeriSign, I
2E31 3430 3206 040B 132B 5665 7269 5369 nc.1402..U...+VeriSi
2043 6C61 7373 2043 4120 2D20 496E 6469 gn Class 1 CA -~ Indi
6475 616C 2053 7363 7269 6265 72 vidual Subscriber

1095 bytes
Version: 7
Type: Certificate
Flags: 0x00
SSL Flags

E-Mail Flags

Object Signing Flags;

Cerificate Size:1047
NickName Length:35
NickName:Scott A Hissam's VeriSign. Inc. ID
Certificate Data: Length 1047 bytes
C 30 1043: SEQUENCE {
4 30 892: SEQUENCE {
8 A0 3: [0] {
10 02 1: INTEGER 2

: X
13 02 16: INTEGER
: 4C E2 8F DF 6C FE FE 1C 5A 10 SA AA 2D 2D 9D F7
31 30 : SEQUENCE {
: OBJECT IDENTIFIER
nd5withRSAEncryption (1 2 840 113549 1 1 4)
(PKCS #1)
RULL

X
SEQUENCE {
SET {
SEQUENCE {

Figure 6: Database Browsing Tool

CMU/SEI-99-TN-010 9

4 Key Database

Decoding the key database was significantly more difficult than was the case for the
certificate database. This difficulty was mainly due to the lack of documentation available,
and the fact the private key record in the data are encrypted with a password. Unlike the
certificate database, the Netscape NSS does not provide any information describing the
format of this database or the encryption used. '

In trying to decode this database, we first dumped all of the records in the database. We
discovered that there are only four different types of records in the key database and only
two records contained the common header mentioned in Section 3. Records that use the
common header have the record types shown in Figure 7.

//Record Types
#define PRIVATEKEY 8
#define PASSWORDCHECK 16

Figure 7: Key Record Types

The other two records which do not contain the common header are the Version record and
the Global Salt’record. These records can be easily identified by their access keys,
“Version" and "global-salt" respectively. The key database can be identified by the
existence of the version record. Additionally, if the key database contains any private key
records it will also contain a password check record, which can be accessed using
“password-check” for the database access key.

As in the certificate database, records in the key database are in big endian format. The key
database record formats shown in Figure 8 were actually easy to determine. However,
determining how to use this information to decrypt a private key was a different story.
Determining the role of each record in the decryption of a private key was going to be a
challenge.

We started this task by first dumping a private key record header and data (ASN.1 encoded)
as shown in Figure 9. The software used to decode the ASN.1 encoded information was
written by Peter Gutmann and may be download from his Web site at

http://www.cs.auckland.ac.nz/~pgut001/

! A string of random bits concatenated with a key or password to foil pre-computation attacks.

10 CMU-SEI-99-TN-010

Decoding the ASN.1 key data revealed the object identifier (OID)” of (06 0B 2A 86 48 86 F7
0D 01 0C 05 01 03) that has description string of

pkcs-12-PBEWithShalAndTripleDESCBC

indicating the specific encryption technique used to encrypt the private key. This OID
description specifies password-based encryption (PBE) with secure hash version one (SHA1)
and the Triple Data Encryption Standard (DES) in cipher block chaining mode (CBC). The
OCTET String and the integer contained in the sequence following the OID are the salt and
iterator value for the PBE scheme. Finally, the last OCTET STRING is the encrypted private
key.

typedef struct

{

unsigned char GlobalSalt{1l6];
}GlobalSaltHeader;

typedef struct

{

// Contains just the common header
} KeyVersionHeader;

#define KEYPASSCHKFIXEDSIZE 18

typedef struct

{

unsigned char Salt[16];

unsigned short CryptAlgLength;

unsigned char *AlgInfo;

unsigned char *EncryptedAccessKey; // "password-check" Encrypted 16 bytes
} PasswordCheckHeader;

#define KEYHEADERFIXEDSIZE 8
typedef struct

(.

unsigned char Salt([8];

char * NickName;
unsigned char * KeyInfoDER;
}KeyHeader ;

Figure 8: Private Key Database Record Formats

2 A concept defined by the ASN.1 specification.

CMU/SEI-99-TN-010 1

Record:

Size: 436 bytes
Version: 3

e: Private Key
Flags: 0x23

Initial Vector: 47 EB A8 CE FC 4B CO 6B
Key Name:Scott A Hissam’s VeriSign, Inc. ID
Name Length:34
Encrypted ASN.1 Private Key

0 30 386: SEQUENCE {

4 30 28: SEQUENCE {

6 06 11: OBJECT IDENTIFIER

: pkcs-12-PBEWithShalAndTripleDESCBC (1 2 840 113549 1 12 5 1

3)

(PKCS #12 OID PBEID (1 2 840 113549 1 12 5 1). Deprecated,
use the 1ncompat1b1e but similar (1 2 840 113549 1 12 1 3) or (1 2 840 113549 1 12 1
4) instead)

19 30 13: SEQUENCE {
21 04 8: OCTET STRING
: 47 EB A8 CE FC 4B CO 6B

31 02 1: INTEGER 1
: }

: }
34 04 352: OCTET STRING
: BF 3E 52 71 3E 07 94 73 25 F2 28 8D 06 D6 1E F8
B3 EC FA 59 17 06 EC F9 8F 92 19 FE 4C FF C3 81
F8 BE FO 12 A2 DD 6A D3 17 DA 56 5A B4 65 8B E8
SD 6F 4B AE 6F 5F 39 DC 1F EF BF 56 6E 79 D5 B4
2B 9A 6E 20 98 4D 66 98 79 4C 85 98 31 1D 4B E3
DE EF C3 07 54 76 86 50 A8 22 9E 94 C8 CB F9 F4
46 9E 52 26 F8 20 8C 51 E8 52 6E 95 16 CA 9D 4D
E6 7E 90 69 96 1E 1E DF CC 67 FE AB 96 5A D7 88
26 1A A9 CC 52 F6 97 OF 28 FC 52 96 DE FB FD F7
87 01 AE 71 EO 88 1B C6 7D 01 C8 83 27 40 36 A3
46 23 DD 64 86 64 F7 64 73 46 04 30 3A 96 71 33
7E 98 F1 BE 18 B9 8B 10 DA FF FA 32 AC 03 18 37
DA 87 32 5F EB F7 ED 0D 37 B2 1B 97 35 D6 38 F2
F8 CC 4E 2D 00 E2 43 F1 6F 02 B2 FD 94 53 9D 7B
78 00 4D FB 4D 47 63 6E B9 65 92 4C 03 C2 A6 9F
20 59 80 D5 A0 D4 B2 79 51 6E 31 B6 20 D4 AS 43
80 31 CE C6 93 0C BO 1E 2F 13 3F C3 CO E0O 7B 16
89 76 88 DD 38 D6 8F 2B 5F 6F 50 1D F7 48 D9 2E
89 C2 04 1F 78 6B AC 85 97 55 OF 71 BE 5D D2 C7
C8 22 41 B6 C9 A0 C9 81 CD 93 55 83 D2 9D E3 00
63 72 4F 79 D4 E9 AD 1D 1E CD 79 3F 89 9A 66 E4
F6 A2 1D EC A0 3E 61 35 81 CC B8 83 5C DF 87 24

}

Figure 9: Private Key Record Header And Key

We needed to find a document that described the PBEWithShal AndTripleDESCBC
password-based encryption technique. An initial search of the Web did not reveal any
additional information about the OID. However, we located documentation that described the
password-based encryption technique for a similar OID called PBEWithShalAnd3-
KeyTripleDESCBC in the RSA laboratories PKCS#12 Personal Information Exchange
Standard [RSA 97]. We thought there was a good chance that both object identifiers used the
same password-based encryption technique.

We performed a Web search for an encryption package that supported the hashing function
SHA1 and Triple DES CBC encryption. This resulted in the discovery of a package called
SSLEAY that contains cryptographic libraries and certificate support software. Additionally,
we located a software package that enhanced the certificate support software in SSLEAY by
adding support for the PKCS12 standard [RSA 97]. This was fantastic because we found all
of the software needed to decrypt a Netscape private key record on the Web.

12 ’ CMU-SEI-99-TN-010

We examined the source code from the downloaded software and incorporated into our
browsing tool the portions that were needed to decrypt a private key. We then attempted to
decrypt a private key using the code extracted from the implementation of the PKCS12
standard. This attempt ended in failure.

Because of our failed attempt, we decided to take a closer look at the Netscape NSS
software. Upon examination, we noticed the function call
SECKEY_ChangeKeyDBPasswordAlg. This API call appeared to change the password-
based encryption algorithm used to encrypt the database. This was a guess because the NSS
documentation only describes the higher level API calls necessary for using SSL and NSPR,
it does not include (other than undocumented C header files) any documentation describing
the lower level APIs. Examination of the header files yielded two password-based
encryption algorithm identifiers that were of particular interest:

1. SEC_OID_PKCS12_PBE_WITH_SHAl_AND_TRIPLE_DES_CBC
2. SEC_OID_PKCS12_V2_PBE_WITH_SHAl_AND_3KEY_TRIPLE_DES_CBC

The first algorithm identifier appeared to be the same as the OID that we were unable to find
any information about, while the second algorithm appeared to be the same as the OID that
we had obtained documentation as well was an implementation. Possibly, our assumption
that both OID’s were compatible was incorrect.

We then proceeded to write a program to change the database encryption algorithm to
SEC_OID_PKCS12_V2_PBE_WITH_SHA1_AND_3KEY_TRIPLE_DES_CBC. After
much trial and error in trying to figure out the semantics of Netscape's undocumented
interface, we were successful using code shown in Figure 10. This exercise turned out to be
very informative. We learned that the global salt record was used in combination with the
password (exact details were not known at this time) and that, contrary to what we had
thought, the two OID’s were not compatible.

Next, we tried to decrypt a private key record in the converted base database. Initially we
were unsuccessful, but after some trial and error, with different password formats (unicode
or non-unicode), we discovered that we could decrypt a private key. The output from the
NSS API call SECKEY_HashPassword needed to be the input password to the PBE
PKCS12 decryption software that we obtained from the Web. After further trial and error
(really a wild guess), we determined that the SECKEY_HashPassword actually performs
the hashing function shown in Figure 11. This was determined by first noticing that all
password were always 20 bytes long, indicating that the user input password and salt were
most likely being used as input to SHA-1 (since SHAL1 is a hashing function that always
returns a twenty-byte digest).

CMU/SEI-99-TN-010 13

On our first attempt, we used the SHA1_Update call in the hash function shown in Figure
11 to concatenate salt onto the password; this failed, however. Next we changed the order
(salt then password); this worked.?

Almost incidentally, we also determined that key databases do not always contain a “Global
Salt” record, which is reason for the HaveGlobalSalt flag in the password hashing
function, which explains the “if”” statement in the hash function. The hashed password,
howevef, is always 20 bytes in length.

#include <stdio.h>
#include <string.h>
#include <secitem.h>
#include <key.h>
int main (int argc, char **argv)
{
SECKEYKeyDBHandle *Handle;
SECItem *st;
char passwd[512];
if (argc!=2) {
printf("usage: changedb <database file>\n");
return -1;

}

if ((Handle=SECKEY_ OpenKeyDBFilename (argv{1l],0))==NULL) {
printf("database open error\n");

return -1;

printf("Enter Password:");
fgets (passwd, sizeof (passwd),stdin) ;
if (strlen(passwd)) passwd[strlen(passwd)-1]=’\0';
St=SECKEY_HashPassword(passwd, Handle->global_salt };
if (SECKEY_CheckKeyDBPassword(Handle, st) !=SECSuccess) {
printf("Incorrect Password\n");
SECKEY_CloseKeyDB (Handle) ;
return ~-1;

}
// Original Database format was SEC_OID_PKCS12_PBE_WITH_SHAl_AND_TRIPLE_DES_CBC

if (SECKEY_ChangeKeyDBPasswordAlg(Handle,st, st,
SEC_OID_PKCSl2_V2_PBE_WITH_SHA1_AND_3KEY_TRIPLE_DES_CBC)==SECSuCcesS)
printf ("Database Format Change Success\n");

else printf(“Database Format Change Falied\n");

SECKEY_CloseKeyDB (Handle) ;
réturn 0;

Figure 10: Code to Change the DB Encryption Algorithm

Unsigned char HashPassword[20];

void __fastcall TForml::SetHashPassword(char *Password)

{
SHA_CTX c;
SHAl_Init(&c);
if (HaveGlobalSalt) SHAl Update(&c,GlobalSalt, 16);
SHAl_Update(&c, (unsigned char *)Password,strlen(Password));
SHA1l_Final (HashPasswd, &c) ;

}

Figure 11: Password and Global Salt Hash Function

At this point, our tool could decrypt all of the records in private key database that had been
converted to use the sec_oIp_PKCS12_V2_PBE_WITH_SHA1_AND_3KEY_TRIPLE_DES_CBC €nCryption
algorithm. However, requiring a database conversion was unsatisfactory to us—we were too
close to stop here. So we needed to determine the details of the

PBEWithShal AndTripleDESCBC encryption algorithm. An exhaustive search of the Web

3 Sometimes, good clean living pays off.

14 CMU-SEI-99-TN-010

PBEWithShal AndTripleDESCBC encryption algorithm. An exhaustive search of the Web
was performed and the following information was discovered about this uncommon OID
(note again the overseas addresses in one of the sources):

e Personal Information Exchange Syntax and Protocol Standard Version 0.020 27, January
1997 Microsoft Corporation -

e aPFX software program (pfx-012.tar.gz) written by Dr. Stephen Henson shenson@drh-
consultancy.demon.co.uk

e PKCS #1 RSA Cryptography Specifications Version 2.0
e RFC 2104 HMAC: Keyed-Hashing for Message Authentication
e the TLS Protocol Version 1.0

Using the above resources and still more trial and error, this time to figure out the semantics
of the above terse documentation, we finally were able to decrypt the private key information
in the database without using NSS to change to the database password encryption algorithms.
The private keys were decrypted as follows:

1. The user input password and global salt (if present) are used to generate a hash password
using the SetHashPassword method shown in Figure 11.

2. The ”Key” and the “Initial Value” for Triple Des Cipher are generated by calling the
BEPGetKeyIV method shown in Figure 12 using the HashPassword for the
password value, salt and iterator from the ASN.1 object. A 24-byte key and 16-byte
initial value are returned.

3. Next, the decrypt function shown in Figure 13 is called using the initial value and key
generated in step 2 and the encrypted data portion of ASN.1 object. If decryption is
successful, a pointer to decrypted data as well as its length is returned.

This software was then incorporated into our browsing tool. This tool now had the capability
to examine and decrypt all the records in Netscape’s certificate and key databases.

Next, we investigated Netscape’s password check record. After some trial and error, we
determined that this record contained a sixteen-byte salt, an encryption algorithm OID, and
sixteen bytes of encrypted data. When the encrypted data is decrypted correctly, the plain
text turns out to be the string “password-check.” This is how Netscape determines if a
password is correct without decrypting a private key record.

CMU/SEI-99-TN-010 15

the certificate database to the private key database. We studied a certificate and private key
record that was known to match and noticed that Netscape included an octet string (see
Figure 14), the certificate record which was the database access key to obtain the private key
record from the private database (see Figure 15). Additional information about Netscape’s
use of database access keys can be determined through studying database records using the

browsing tool. Such information is beyond the scope of this report.

void __fastcall TForml: : PBEGetKeyIV(unsigned char *Password,
unsigned char *Salt,
int SaltLength,
int Iterator,
unsigned char *Key,
unsigned char *IV)

unsigned char Digest[20],

SecondDigest [20],
DK[40];

SHA_CTX c;

HMAC_SHAl1l_CTX hmac_ctx;

memset (SecondDigest, 0, 20);

memcpy (SecondDigest, Salt, SaltLength);

SHAl_Init(&c);

SHA1_Update(&c, Password,20);
SHA1l_Update(&c, Salt,SaltLength);
SHA1l_Final (Digest, &cC);

for (int i = 1; i < Iterator; i++)

SHAl_Init(&c);
SHAl_Update (&c,Digest, 20);
SHAl_Final (Digest, &c);
}

for (int i = 0; i < 2; i++)
{
HMAC_SHAl_ Init(&hmac_ctx, Digest,20);
HMAC_SHA1_Update (&hmac_ctx, SecondDigest, 20);
HMAC_SHA1l_Update(&hmac_ctx, Salt, SaltLength);
HMAC_SHA1l_Final (&hmac_ctx, &DK[i*20), NULL);
HMAC_SHA1_Init (&hmac_ctx, Digest,20);
HMAC_SHA1_Update(&hmac_ctx, SecondDigest, 20);
HMAC_SHA1_Final (&hmac_ctx, SecondDigest, NULL);
}

memcpy (Key, DK,24);

memcpy (IV, DK + 32, 8);

Figure 12: Key and IV Generation

16

CMU-SEI-99-TN-010

unsigned char * __fastcall TForml::TrippleDESDecrypt (unsigned char *CryptData,
int CryptDataLen,
unsigned char *Key,
unsigned char *IV,
int *DecryptDatalen)

DES_EDE3_CBC_Type cipher_ctx;

unsigned char *DecryptData;

int tmp;

if ((DecryptData = (unsigned char *)malloc (CryptDataLen + 8))}==NULL)
{
*DecryptDatalen=0;
return (NULL) ;

}
DES_EDE_3_CBC_Init(&cipher_ctx, Key, IV,DECRYPT);
DES_EDE_3_CBC_Update(&cipher_ctx,DecryptData, DecryptDataLen, CryptData,
CryptDatalen) ;
if (!DES_EDE_3_CBC_Final (&cipher_ctx, DecryptData+*DecryptDatal.en, &tmp))

free (DecryptData) ;

*DecryptDataLen=0;

return (NULL) ;

}
(*DecryptDatal.en) +=tmp;

return(DecryptData) ;
}

Figure 13: Triple DES Decrypt Function

470 03 75: BIT STRING 0 unused bits, encapsulates {
473 30 72: SEQUENCE {

475 02 65: INTEGER

: 00 B1 E0 AD 39 E7 09 41 B9 D3 21 90 9B OF 95 78
E6 FD EF D3 62 34 51 4D 79 02 83 17 9F 4F 09 68
5C 81 A2 E6 2D Bl F7 BB E6 69 BA 39 A5 F4 17 0B
A9 A9 EA BO 4C 7F FF 55 A5 46 A7 67 10 3A 1F El

B
INTEGER 65537
}
}

542 02 3

“e 6o sa ae e as e

Figure 14: Certificate Fragment of Database Access Key

Key Data:
Size is :65 bytes
0 00B1 EOAD 39E7 0941 B9D3 2190 9BOF 9578 E6FD EFD3 S - U WA IR |
20 6234 514D 7902 8317 9F4F 0968 5C81 A2E6 2DB1 F7BB b4QMy....O.h\...-...
40 E669 BA39 ASF4 170B A9A9 EABO 4C7F FF55 AS546 A767 Lil9a.a... L..U.F.g

60 103A 1FE1l 7B

Figure 15: Private Key Record Access Key

CMU/SEI-99-TN-010

17

5 Summary

Netscape’s certificate database is straightforward and easy to decode. The key database was
somewhat difficult to decode because of the difficulty in obtaining information about the
obsolete PFX format that is used to encrypt the private key data. This PFX specification
defined the uncommon PBEWithShal AndTripleDESCBC OID. The ability to decode the key
and certificate databases stems from Netscape’s use of standards such as ASN.1 and PKCS.
Knowledge of these standards allowed us to more easily interpret information within
Netscape databases. While the use of Netscape’s NSS provided some information, we
believe that the information provided in this document could have been determined without
NSS. However, if Netscape did not use standards in the development of the databases,
records, and encryption schemes, this task would have been nearly impossible.

The méjor lessons to be learned from this case study are the following:

1. If you need to peer inside a product (a black box), you must know what you are looking
for. In this case study deep and detailed knowledge of computer security was necessary.
Without this knowledge it is doubtful that progress could have been made.

2. For good and sufficient reasons, vendors such as Netscape will make use of standards in
building their products (for example, ASN.1). Knowledge of these standards is also
crucial for developers who want to peer inside a product. From a vendor’s perspective,
this shows the use of standards to be a two-edged sword.

3. Asignificant degree of systems expertise is needed by developers who will peer inside a
product. Programs must be written, raw data dumps must be interpreted, networks
“sniffed,” and so forth in order to crack the puzzle. Moreover, strong problem solving
skills and perseverance are needed since there is rarely just one puzzle to be cracked.

All of this tends to support the observation that building systems from commercial software
product often requires more, rather than less, technical sophistication on the part of software
developers.

18 CMU-SEI-99-TN-010

References

Dierks 98

Krawczyk 97

Microsoft 97

RSA 98

RSA 97

RSA 88

Dierks, T. & Allen, C. “The TLS Protocol Version 1.0,” internet draft
<draft-ieft-tls-protocol-05.txt> [online]. Available FTP: <URL:
ftp://ds.internic.net/internet-drafts/draft-ietf-tls-protocol-05.txt>
(November 12, 1997). o

Krawczyk, H.; Bellare, M.; & Canetti, R. “HMAC: Keyed-Hashing for
Message Authentication,” request for comments <rfc2104.txt> [online].
Available WWW:

<URL.: http://www.ietf.org/rfc/rfc2104.txt> (February 1997).

Microsoft Corporation. PFX: Personal Information Exchange Syntax
and Protocol Standard, Version 0.020. Microsoft Developers Network
(MSDN) Library. Seattle, Wa.: Microsoft Corporation, January 1997.

RSA Laboratories. PKCS #1 RSA Cryptography Specifications,
Version 2.0 [online]. Available FTP:

<URL.: ftp://ftp.rsa.com/pub/pkcs/ascii/pkcs-1v2.asc>
(September 1998).

RSA Laboratories. PKCS #12 Personal Information Exchange Syntax
Standard Version 1.0, draft [online]. Available WWW: <URL:
http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-12.html>

(April 30, 1997).

RSA Laboratories. PKCS #5: Password-Based Cryptography Standard
Version 2.0, second draft [online]. Available WWW:

<URL: http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-5.html>
(December 10, 1988). :

CMU/SEI-99-TN-010

19

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE 3. REPORT TYPE AND DATES
March 1999 COVERED
Final
4. TITLE AND SUBTITLE . 5. FUNDING NUMBERS
Into the Black Box: A Case Study in Obtaining Visibility into Commercial Software C — F19628-95-C-0003
6. AUTHOR(S)

Daniel Plakosh, Scott Hissam, Kurt Wallnau

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University

Pittsburgh, PA 15213 CMU/SEI-99-TN-010
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
HQ ESC/D'B AGENCY REPORT NUMBER

5 Eglin Street

Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT 12.B DISTRIBUTION CODE

Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)

We were recently involved with a project that faced an interesting and not uncommon dilemma. The project
needed to programmatically extract private keys and digital certificates from the Netscape Communicator v4.5
database. Netscape documentation was inadequate for us to figure out how to do this. As it turns out, this
inadequacy was intentional—Netscape was concerned that releasing this information might possibly violate export
control laws concerning encryption technology. Since our interest was in building a system and not exporting
cryptographic technology, we decided to further investigate how to achieve our objectives even without support
from Netscape. We restricted ourselves to the use of Netscape-provided code and documentation, and to
information available on the Web. Our objective was to build our system, and to provide feedback to Netscape on
how to engineer their product to provide the capability that we (and others) need, while not making the product
vulnerable or expose the vendor to violations of export control laws. This paper describes our experiences peering
“into the black box.”

14. SUBJECT TERMS 15. NUMBER OF PAGES
commercial off-the-shelf (COTS), component integration, netscape, security 19 pp.

16. PRICE CODE

17. SECURITY CLASSIFICATION ~ |18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION |[20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
208-102

